MORE ON MONADIC LOGIC PART D: A NOTE ON ADDITION OF THEORIES

BY

SAHARON SHELAH[†]

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel; EECS and Mathematics Departments, University of Michigan, Ann Arbor, MI 48109 USA; and Rutgers University, Department of Mathematics, New Brunswick, New Jersey, USA

ABSTRACT

We improve somewhat some of the results from Baldwin and Shelah [BSh 156], closing a small gap therein (see [BSh 156], pages 248, lines 19 ff.; 255, second and third paragraphs; 256, following 3.2.10; and 257 following 3.2.12).

In [BSh 156], Baldwin and the author classified all theories of the form (T, \mathcal{L}) where (T, \mathcal{L}) is the collection of \mathcal{L} -sentences valid in models of the complete first-order theory T and \mathcal{L} is one of the following: second-order logic, permutational logic, monadic logic. This classification necessitated in part the computation of bounds for certain kinds of Hanf numbers. For example, if $\alpha \ge \omega$ and T is a countable \aleph_1 -decomposable theory, then ([BSh 156] 3.2.9, p. 255)

$$(*) H_{L_{\alpha,\mu}^{\alpha}(\mathsf{Mon})}^{T} \leq (\exists_{1+\alpha+1}(\mu))^{+},$$

where $H_{L^{\alpha}_{\omega,\mu}(\mathsf{Mon})}^T$ is the Hanf number of $L^{\alpha}_{\infty,\mu}(\mathsf{Mon})$ for theories relative to T. [In more detail, $H_{L^{\alpha}_{\omega,\mu}(\mathsf{Mon})}^T$ is the least cardinal κ such that for any $L^{\alpha}_{\infty,\mu}(\mathsf{Mon})$ -theory Φ in the language of T, if $T \cup \Phi$ has a model of power κ , then $T \cup \Phi$ has models of arbitrarily large power. Again, see 3.2.9 in [BSh 156]: the logic $L^{\alpha}_{\infty,\mu}(\mathsf{Mon})$ is defined on page 245 (3.1.1(b)(iv)).]

Now in fact, as stated on pages 248, 255, 256 and 257 of [BSh 156], the author could improve the bound (*), claiming the following theorem: if $\alpha \ge \omega$ and T is a countable, $|T|^+$ -decomposable theory, then

Received April 12, 1988 and in revised form May 25, 1989

[†] The author would like to thank the United States-Israel Binational Science Foundation for partially supporting this research and Alice Leonhardt for the beautiful typing of the manuscript. Publication No. 284D.

(**)
$$H_{L_{x,\mu}(Mon)}^T \leq (\Im_{1+\alpha}(\mu)^{|T|)+}.$$

Theorem 3 of this note presents a proof of (**) in the notation and framework of [BSh 156] and [ShA 1]. Briefly put, the basic strategy of [BSh 156] in bounding $H_{L_{x,\mu}^{\alpha}(Mon)}^{T}$ is to bound first the total number of possible $mT_k^{\alpha}(M)$; then the assumption that T is \aleph_1 -decomposable — so that M has a tree decomposition as a free union of small models — allows one to blow up M to a model of arbitrarily large power. In Definition 1 of this note, we shall formulate a principle $(*)(L, \alpha, \bar{k}, \lambda, \mu)$ which asserts the existence of a certain Boolean algebra B of power at most λ such that $|mT_k^{\alpha}(L)| \le 2^{|B|}$ (see 3.1.1(a) in [BSh 156] for the definitions of $mT_k^{\alpha}(M)$, $mT_k^{\alpha}(L)$). It suffices then to prove in Theorem 3 the appropriate instances of $(*)(L, \alpha, \bar{k}, \lambda, \mu)$ in order to deduce the bound (**) for $H_{L_{x,\mu}^{\alpha}(Mon)}^{T}$.

Now let us provide the details relevant to Theorem 3.

- 1. Definition. Let $(*)(L, \alpha, \bar{k}, \lambda, \mu)$ be the statement:
- (A) there is a Boolean algebra B of subsets of $mT_k^{\alpha}(L)$, $||B|| \leq \lambda$ (this defines a topology, generated by the members of the Boolean algebra as the family of clopen sets) such that the following holds:
- (B) if for $l = 0, 1, M^l = \sum_{i \in I_l} M^l_i, g^l : B \rightarrow \text{cardinals}$ is defined by $g^l(b) = |\{i \in I^l : mT^a_k(M^l_i) \in b\}|$ and

$$(\forall b \in B)[Min\{g^0(b), \mu\} = Min\{g^1(b), \mu\}],$$

then $mT_k^{\alpha}(M^0) = mT_k^{\alpha}(M^1)$.

[For the relevant definition, see [BSh 156] 3.1.8.]

- 2. REMARK. Using (B) for I_0 , I_1 singletons we get that any two members of $mT_k^{\alpha}(L)$ are separated by some $b \in B$, hence $|mT_k^{\alpha}(L)| \le 2^{|B|}$ and the topology which B indexes is Hausdorff.
- 3. THEOREM. For a sequence \bar{k} of ordinals, a cardinal κ and an ordinal α , we define by induction on α (for all \bar{k} , L) the cardinals

$$\lambda_{\kappa,k}^{\alpha} \geq \mu_{\kappa,k}^{\alpha},$$

$$\alpha = 0, \qquad \lambda_{\kappa,k}^{\alpha} = 2^{|L|} + \aleph_0, \qquad \mu_{\kappa,k}^{\alpha} = \aleph_0,$$

$$\alpha + 1, \qquad \lambda_{\kappa,k}^{\alpha+1} = 2^{\lambda_{\kappa+|k(\alpha)|,k}^{\alpha}}, \qquad \mu_{k,k}^{\alpha+1} = (\lambda_{\kappa+|k(\alpha)|,k}^{\alpha})^+,$$

$$\alpha = \delta \ limit, \qquad \lambda_{\kappa,k}^{\alpha} = \sum_{\beta \leq \alpha} \lambda_{\kappa,k}^{\beta}, \qquad \mu_{\kappa,k}^{\alpha} = \sum_{\beta \leq \alpha} \mu_{\kappa,k}^{\beta}.$$

Then $(*)(L, \alpha, \bar{k}, \lambda^{\alpha}_{|L|,\bar{k}}, \mu^{\alpha}_{|L|,\bar{k}}).$

PROOF. By induction on α . The case $\alpha = 0$ is Claim 5. The case α successor is Claim 4 and the case α limit is Claim 7.

4. Lemma. Suppose $(*)(L + \bar{P}, \alpha, \bar{k}, \lambda, \mu)$ holds and this is exemplified by the Boolean algebra $B, \mu \leq \lambda$ and $\bar{P} = \langle P_i : i < \bar{k}(\alpha) \rangle$. Then $(*)(L, \alpha + 1, \bar{k}, 2^{\lambda}, \lambda^+)$ holds.

PROOF. Let $X = mT_k^{\alpha}(L + \bar{P})$, $Y = mT_k^{\alpha+1}(L)$. So B is a Boolean algebra of subsets of X, $||B|| \le \lambda$ and, by 2, $|X| \le 2^{\lambda}$. We define a Boolean algebra C of subsets of Y. It is the closure by intersection of $\le \lambda$ many elements and by complements of the family of basic elements, where the basic elements are $\{t \in Y : s \in T\}$ (for $s \in X$) or $\{t \in Y : (\exists s \in S)s \in t\}$ where S is a closed or open subset of X.

We now prove that $(*)(L, \alpha + 1, \bar{k}, 2^{\lambda}, \lambda^{+})$ is exemplified by C.

First note that $|C| \le 2^{\lambda}$: the number of clopen subsets of X (by the topology which B induces) is exactly $||B|| \le \lambda$, hence the number of open subsets is $\le 2^{\lambda}$, hence the number of closed subsets is $\le 2^{\lambda}$ and the closure under intersection of $\le \lambda$ and complementation does not change this.

Secondly, for l = 0, 1 let $M^l = \sum_{i \in I^l} M_i^l$, and let $g^l : C \to \text{cardinals}$ be defined by $g^l(c) = |\{i \in I^l : mT_k^{\alpha}(M_i^l) \in b\}|$ and suppose that

$$(\forall c \in C)[Min\{g^{0}(c), \lambda^{+}\} = Min\{g^{1}(c), \lambda^{+}\}].$$

We shall prove that $mT_k^{\alpha+1}(M^0) = mT_k^{\alpha+1}(M^1)$.

By the symmetry it is enough to prove the following: we are given \bar{P}_i^0 $(i \in I^0)$ (a sequence of $k(\alpha)$ subsets of M_i^0); and we shall find \bar{P}_i^1 $(i \in I^1)$ such that

$$mT_k^{\alpha}\left(\sum_{i\in I^0}\left(M_i^0\,\bar{P}_i^0\right)\right)=mT_k^{\alpha}\left(\sum_{i\in I^1}\left(M_i^1\,,\,\bar{P}_i^1\right)\right).$$

Let $S = \bigcap \{b \in B : \text{ there are } \leq \lambda \text{ elements } i \in I^0 \text{ such that } mT_k^{\alpha}(M_i^0, \bar{P}_i^0) \text{ is not in } b\}$ (remember B is a family of subsets of X). Clearly S is a closed subset of X. Now

$$\begin{aligned} &\{i \in I^0 : mT_k^{\alpha+1}(M_i^0) \cap S = \emptyset \} \\ &\subseteq \{i \in I^0 : mT_k(M_i^0, \bar{P}_i^0) \notin S \} \\ &\subseteq \bigcup_{b \in B} \{i \in I^0 : mT_k^{\alpha}(M_i^0, \bar{P}_i^0) \in b \text{ and } (\exists \, \exists^{\lambda} j \in I^0) [mT_k^{\alpha}(M_j^0, \bar{p}_1^0) \in b] \} \end{aligned}$$

which has power $\leq \lambda$ (as $||B|| \leq \lambda$).

Let

$$A_0 = \{ i \in I^0 : mT_k^{\alpha}(M_i^0, \bar{P}_i^0) \notin S \}$$
 (so $|A_0| \le \lambda$).

Let $A_1 = \{i \in I^0 : mT_k^{\alpha+1}(M_i^0) \cap S = \emptyset \}$ so $A_1 \subseteq A_0$. We can choose for each $i \in A_1$ a member c_i of C such that $mT_k^{\alpha+1}(M_i^0) \in c_i$, and $t \in c_i \to t \cap S = \emptyset$ (remember that members of Y are subsets of X). If $i, j \in A_1$, $mT_k^{\alpha+1}(M_j^0) \neq mT_k^{\alpha+1}(M_i^0)$ then for some $x_{i,j} \in X$, $[x_{i,j} \in mT_k^{\alpha+1}(M_i^0) \leftrightarrow x_{i,j} \notin mT_k^{\alpha+1}(M_1^0)]$. So we can replace c_i by

$$c_i^1 \stackrel{\text{def}}{=} \{ y \in Y : y \in c_i \text{ and if } x_{i,j} \text{ is defined } x_{i,j} \in y \iff x_{i,j} \in mT_k^{\alpha+1}(M_i^0) \}.$$

So if $i, j \in A_1$, $mT_k^{\alpha+1}(M_j^0) \neq mT_k^{\alpha+1}(M_i^0)$ implies $mT_k^{\alpha+1}(M_j^0) \notin c_i$ and even $c_j \cap c_i = 0$ (remember the definition of C). So for $c \leq c_i$, $g^1(c) \leq g^1(c_i) \leq \lambda$ and $g^1(c) > 0$ iff $g^1(c) = g^1(c_i)$ iff $mT_k^{\alpha+1}(M_i^0) \in c$.

As we have assumed $(\forall c \in C)[Min(g^0(c), \lambda^+) = Min\{g^1(c), \lambda^+\}]$ the same holds for g^1 , so we can find a one-to-one mapping h from A_1 onto

$$A_1^1 = \{i \in I^1 : mT_k^{\alpha+1}(M_i^1) \cap S = \emptyset\}$$

such that

$$mT_k^{\alpha+1}(M_i^0) = mT_k^{\alpha+1}(M_{h(i)}^2).$$

Hence we can find \bar{P}_j^1 (for $j \in A_1^1$) such that

$$mT_{\bar{k}}^{\alpha}(M_{i}^{0},\bar{P}_{i}^{0})=mT_{\bar{k}}^{\alpha}(M_{h(i)}^{1},\bar{P}_{h(i)}^{1}).$$

We (similarly to the above choice) can now define $c_i \in C$ for $i \in A_0 - A_1$ such that: $[i \in A_0 - A_1 \land j \in A_1 \land i \neq j \Rightarrow c_i \cap c_i = 0]$,

$$[mT_k^{\alpha+1}(M_i^0) \neq mT_k^{\alpha+1}(M_i^0) \land i \in A_1 - A_0 \Rightarrow c_i \cap c_i = 0]$$

and $(\forall i \in A_0 - A_1)$ $(\forall t \in c_i)[t - S \neq \emptyset]$ $(t \in c_i)$ implies $t \in Y$ hence $t \subseteq X$) and $(\forall t \in c_i)[mT_k^{\alpha}(M_i^0, \bar{P}_i^0) \in t]$. Now we can find a one-to-one function f from $A_0 - A_1$ into $I^1 - A_1^1$ such that $mT_k^{\alpha+1}(M_{f(i)}^1) \in c_i$ for $i \in A_0 - A_1$; then we can define $\bar{P}_{f(i)}^1$, such that $mT_k^{\alpha}(M_{f(i)}^1, \bar{P}_{f(i)}^1) = mT_k^{\alpha}(M_i^0, \bar{P}_i^0)$.

Now for every $b \in B$, $b \subseteq S$, we know that $E_b = \{i \in I^0 : mT_k^{\alpha}(M_i^0, \bar{P}_i^0) \in b\}$ has power $\geq \lambda^+$ and $|B| \leq \lambda$, so it is well known that we can find $E_b' \subseteq E_b$, $|E_b'| = \lambda$, $E_b' \cap A_1 = \emptyset$, $E_{b_1}' \cap E_{b_2}' = \emptyset$ for $b_1 \neq b_2$. By the hypothesis on g_1 each

$$E_b^1 = \{i \in I^1 : mT_k^{\alpha+1}(M_i^1) \cap b = \emptyset \}$$

has power $\geq \lambda^+$ for $b \subseteq S(b \in B)$; so we can find a one-to-one mapping f_1 from $\bigcup \{E'_b : b \in B, b \subseteq S\}$ to I^1 -(Rang $f \cup$ Rang h) such that:

$$i \in E_b' \Rightarrow mT_k^{\alpha+1}(M_{f(i)}^1) \cap b \neq \emptyset$$
.

So we can define $\bar{P}_{f_i(i)}^1$ such that for $i \in E_b'$ where $b \in B$, $b \subseteq S$ such that $mT_k^{\alpha}(M_i^1, \bar{P}_i^1) \in b$.

We define \bar{P}_i^1 for $i \in I^1 - \bigcup \text{Rang}(f \cup f_1 \cup h)$ such that $mT_k^{\alpha}(M_i^1, \bar{P}_i^1) \in S$ (not hard as $i \notin A_1^1$).

Now we apply the induction hypothesis.

- 5. CLAIM. $(*)(L, 0, \bar{k}; \lambda, \mu)$ holds with λ being the power of the Boolean algebra generated by the relevant $\exists \bar{x}\varphi, \varphi$ conjunction of atomic and negation of atomic formulas, $\mu = \aleph_0$ (so for $k(-1) = \aleph_0$, L countable, $|mT_k^0(L)| = 2^{2\aleph_0}$, $|B| = 2^{\aleph_0}$).
- 6. REMARK. Claim 5 raises the thought that it may be better to define $mT_k^0(M)$ as $\{\exists x \varphi : \varphi \text{ q.f. finite}, l(x) < k(-2)\}$. So for L countable $|mT_k^0(L)| = 2^{\aleph_0}$, $|B| = \aleph_0$ which seems more reasonable and I do not see any bad effect.
- 7. CLAIM. If δ is limit and $(*)(L, \alpha, \overline{k}, \lambda_{\alpha}, \mu_{\alpha})$ is exemplified by B_{α} for $\alpha < \delta$, then $(*)(L, \delta, \overline{k}, \Sigma_{\alpha} \lambda_{\alpha}, \Sigma \mu_{\alpha})$ is true (assuming $\Sigma_{\alpha} \lambda_{\alpha}$ is infinite, a triviality).

PROOF. For $\alpha < \beta$ and L, let $\pi_{\alpha,\beta}^{L,k}$ be the function from $mT_k^{\beta}(L)$ to $mT_k^{\alpha}(L)$ such that: if $x = mT_k^{\beta}(M)$ then $\pi_{\alpha,\beta}^{L,k}(x) = mT_k^{\alpha}(M)$. Let B be the Boolean algebra of subsets of mT_k^{δ} generated by

$$\{(\pi_{\alpha\delta}^{L,k})^{-1}(b): \alpha < \delta, b \in B_{\alpha}\}$$

where B_{α} exemplifies $(*)(L, \alpha, \bar{k}, \lambda_{\alpha}, \mu_{\alpha})$.

- 8. Discussion. (a) Is it worthwhile to make the general addition theory (i.e., *I* a structure) like what we do here?
- (b) We can waive "B is a Boolean subalgebra"; for the finitary cases this saves us from meaninglessness (as B is necessarily the family of all subsets).
- (c) We can also try to make mT_k^{α} "grow" more slowly with α , e.g., in the case we look at partitions, we first take any coarser division with an *a priori* bounded number of parts. We shall still have addition theorems.

REFERENCES

[ShA 1] S. Shelah, Classification Theory and the Number of Non-isomorphic Models, North-Holland Publ. Co., Amsterdam, 1978, 542 pp. +xvi.

[BSh 156] J. Baldwin and S. Shelah, Classification of theories by second order quantifiers, Proc. 1980/1 Jerusalem Model Theory Year, Notre Dame J. Formal Logic 26 (1985), 229-303.